Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.4 Exercises - Page 848: 4

Answer

$$ \mathbf{T}=\frac{3\sqrt{3}}{2\sqrt{7} } \mathbf{i} +\frac{1}{2\sqrt{7}} \mathbf{j} $$

Work Step by Step

Given $$\mathbf{r}= 6\sin t\mathbf{i} -2\cos t\mathbf{j} $$ Since $$ \mathbf{r'}= 6\cos t\mathbf{i} +2\sin t\mathbf{j} $$ and $$ \| \mathbf{r'} \|=\sqrt{36 \cos^2 t+ 4\sin^2 t } =2 \sqrt{\sin^2 t+9\cos^2 t }$$ Then unit tangent vector given by \begin{align*} \mathbf{T}(t)&=\frac{\mathbf{r'}(t)}{\|\mathbf{r'}(t)\|}\\ &=\frac{ 6\cos t\mathbf{i} +2\sin t\mathbf{j}}{2 \sqrt{\sin^2 t+9\cos^2 t }}\\ &=\frac{ 3\cos t\mathbf{i} + \sin t\mathbf{j}}{ \sqrt{\sin^2 t+9\cos^2 t }} \end{align*} At $t=\pi/6$ $$ \mathbf{T}=\frac{3\sqrt{3}}{2\sqrt{7} } \mathbf{i} +\frac{1}{2\sqrt{7}} \mathbf{j} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.