Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.5 The Comparison, Ratio, And Root Tests - Exercises Set 9.5 - Page 637: 53

Answer

(a) converges (b) diverges

Work Step by Step

We show by graph that $\ln x \lt \sqrt x $ if $x \gt 0$ (please see the figure attached). (a) For $k \ge 1$, we have $\ln k \lt \sqrt k $. Thus, $\dfrac{{\ln k}}{{{k^2}}} \lt \dfrac{{\sqrt k }}{{{k^2}}} = \dfrac{1}{{{k^{3/2}}}}$ $\mathop \sum \limits_{k = 1}^\infty \dfrac{{\ln k}}{{{k^2}}} \lt \mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{{k^{3/2}}}}$ The bigger series $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{{k^{3/2}}}}$ is a convergent $p$-series (because $p = \dfrac{3}{2} \gt 1$). Thus, by the Comparison Test, the series $\mathop \sum \limits_{k = 1}^\infty \dfrac{{\ln k}}{{{k^2}}}$ converges. (b) For $k \ge 1$, we have $\ln k \lt \sqrt k $. Thus, $\dfrac{1}{{\ln k}} \gt \dfrac{1}{{\sqrt k }}$ $\dfrac{1}{{{{\left( {\ln k} \right)}^2}}} \gt \dfrac{1}{k}$ $\mathop \sum \limits_{k = 2}^\infty \dfrac{1}{{{{\left( {\ln k} \right)}^2}}} \gt \mathop \sum \limits_{k = 2}^\infty \dfrac{1}{k}$ The harmonic series $\mathop \sum \limits_{k = 2}^\infty \dfrac{1}{k}$ diverges. Therefore, by the Comparison Test, the series $\mathop \sum \limits_{k = 2}^\infty \dfrac{1}{{{{\left( {\ln k} \right)}^2}}}$ diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.