Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.5 The Comparison, Ratio, And Root Tests - Exercises Set 9.5 - Page 637: 47

Answer

The Ratio Test; converges.

Work Step by Step

We apply the Ratio Test. Write ${a_k} = \dfrac{{{{\left( {k!} \right)}^2}}}{{\left( {2k} \right)!}}$. Evaluate: $\rho = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{a_{k + 1}}}}{{{a_k}}} = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{{\left[ {\left( {k + 1} \right)!} \right]}^2}}}{{\left[ {2\left( {k + 1} \right)} \right]!}}\cdot\dfrac{{\left( {2k} \right)!}}{{{{\left( {k!} \right)}^2}}} = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{{\left[ {\left( {k + 1} \right)k!} \right]}^2}}}{{\left( {2k + 2} \right)!}}\cdot\dfrac{{\left( {2k} \right)!}}{{{{\left( {k!} \right)}^2}}} = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{{\left( {k + 1} \right)}^2}}}{{\left( {2k + 1} \right)\left( {2k + 2} \right)}}$ $ = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{k^2} + 2k + 1}}{{4{k^2} + 6k + 2}} = \mathop {\lim }\limits_{k \to \infty } \dfrac{{1 + \dfrac{2}{k} + \dfrac{1}{{{k^2}}}}}{{4 + \dfrac{6}{k} + \dfrac{2}{{{k^2}}}}} = \dfrac{1}{4}$ Since $\rho = \dfrac{1}{4} \lt 1$, by the Ratio Test, the series $\mathop \sum \limits_{k = 1}^\infty \dfrac{{{{\left( {k!} \right)}^2}}}{{\left( {2k} \right)!}}$ converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.