Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.5 The Comparison, Ratio, And Root Tests - Exercises Set 9.5 - Page 637: 48

Answer

The Ratio Test; diverges.

Work Step by Step

We apply the Ratio Test. Write ${a_k} = \dfrac{{{{\left[ {\pi \left( {k + 1} \right)} \right]}^k}}}{{{k^{k + 1}}}}$. Evaluate: $\rho = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{a_{k + 1}}}}{{{a_k}}} = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{{\left[ {\pi \left( {k + 2} \right)} \right]}^{k + 1}}}}{{{{\left( {k + 1} \right)}^{k + 2}}}}\cdot\dfrac{{{k^{k + 1}}}}{{{{\left[ {\pi \left( {k + 1} \right)} \right]}^k}}} = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{k^{k + 1}}}}{{{{\left( {k + 1} \right)}^{k + 2}}}}\cdot\dfrac{{{{\left[ {\pi \left( {k + 2} \right)} \right]}^{k + 1}}}}{{{{\left[ {\pi \left( {k + 1} \right)} \right]}^k}}}$ $ = \pi \mathop {\lim }\limits_{k \to \infty } \dfrac{{{k^{k + 1}}}}{{{{\left( {k + 1} \right)}^{k + 2}}}}\cdot\dfrac{{{{\left( {k + 2} \right)}^{k + 1}}}}{{{{\left( {k + 1} \right)}^k}}} = \pi \mathop {\lim }\limits_{k \to \infty } \dfrac{{{k^{k + 1}}}}{{{{\left( {k + 1} \right)}^{k + 1}}}}\cdot\dfrac{{{{\left( {k + 2} \right)}^{k + 1}}}}{{{{\left( {k + 1} \right)}^{k + 1}}}}$ $ = \pi \mathop {\lim }\limits_{k \to \infty } {\left( {\dfrac{k}{{k + 1}}} \right)^{k + 1}}{\left( {\dfrac{{k + 2}}{{k + 1}}} \right)^{k + 1}} = \pi \mathop {\lim }\limits_{k \to \infty } {\left( {\dfrac{1}{{1 + \dfrac{1}{k}}}} \right)^{k + 1}}{\left( {\dfrac{{1 + \dfrac{2}{k}}}{{1 + \dfrac{1}{k}}}} \right)^{k + 1}} = \pi $ Since $\rho = \pi \gt 1$, by the Ratio Test, the series $\mathop \sum \limits_{k = 1}^\infty \dfrac{{{{\left[ {\pi \left( {k + 1} \right)} \right]}^k}}}{{{k^{k + 1}}}}$ diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.