Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.5 The Comparison, Ratio, And Root Tests - Exercises Set 9.5 - Page 637: 29

Answer

The Ratio Test; converges.

Work Step by Step

We apply the Ratio Test. Write ${a_k} = {k^{50}}{{\rm{e}}^{ - k}} = \dfrac{{{k^{50}}}}{{{{\rm{e}}^k}}}$. Evaluate: $\rho = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{a_{k + 1}}}}{{{a_k}}} = \dfrac{{{{\left( {k + 1} \right)}^{50}}}}{{{{\rm{e}}^{k + 1}}}}\cdot\dfrac{{{{\rm{e}}^k}}}{{{k^{50}}}} = \dfrac{1}{{\rm{e}}}\mathop {\lim }\limits_{k \to \infty } {\left( {\dfrac{{k + 1}}{k}} \right)^{50}} = \dfrac{1}{{\rm{e}}}\mathop {\lim }\limits_{k \to \infty } {\left( {1 + \dfrac{1}{k}} \right)^{50}} = \dfrac{1}{{\rm{e}}}$ Since $\rho = \dfrac{1}{{\rm{e}}} \lt 1$, by the Ratio Test (Theorem 9.5.5), the series $\mathop \sum \limits_{k = 1}^\infty {k^{50}}{{\rm{e}}^{ - k}}$ converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.