Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.3 Infinite Series - Exercises Set 9.3 - Page 622: 37

Answer

See proof

Work Step by Step

\begin{aligned} \textbf{Step 1}\ &\text{Given the equation}\\ &\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \cdots = \frac{1}{2}\\ &\text{and we're asked to show that.}\\ \textbf{Step 2}\\ &\text{Let } s_n \text{ denote the sum of the initial terms of the series, up to and including the term with index } n.\\ &\text{As } n \text{ increases, the partial sum } s_n \text{ includes more and more terms of the series, thus}\\ &\quad \sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)}\\ \\ \textbf{Step 3}\\ &\text{Let's write } s_n \text{ in the closed form by using the method of partial fractions.}\\ &\frac{1}{(2k-1)(2k+1)} = \frac{A}{2k-1} + \frac{B}{2k+1}\\ &\frac{1}{(2k-1)(2k+1)} = \frac{(2k+1)A + (2k-1)B}{(2k-1)(2k+1)}\\ &\begin{cases} A+B = 0\\ A - B = 1 \end{cases}\\ &\Rightarrow A = \frac{1}{2}, B = -\frac{1}{2}\\ \\ \textbf{Step 4}\\ &\text{Thus,}\\ & s_n = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{2k-1} - \frac{1}{2} \sum_{k=1}^{n} \frac{1}{2k+1}\\ &\Rightarrow s_n = \frac{1}{2} \left(1 - \frac{1}{2n+1}\right)\\ \\ \textbf{Step 5}\\ &\text{Therefore,}\\ &\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \lim_{n \to \infty} s_n = \frac{1}{2} \left(1 - \lim_{n \to \infty} \frac{1}{2n+1}\right)\\ &= \frac{1}{2} \cdot 1 = \frac{1}{2}\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.