Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.3 Infinite Series - Exercises Set 9.3 - Page 622: 36

Answer

See proof

Work Step by Step

Write $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{k\left( {k + 2} \right)}} = \dfrac{1}{{1\cdot3}} + \dfrac{1}{{2\cdot4}} + \dfrac{1}{{3\cdot5}} + \cdot\cdot\cdot$ We can write $\dfrac{1}{{k\left( {k + 2} \right)}} = \dfrac{1}{2}\left( {\dfrac{1}{k} - \dfrac{1}{{k + 2}}} \right)$. So, $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{k\left( {k + 2} \right)}} = \dfrac{1}{2}\mathop \sum \limits_{k = 1}^\infty \left( {\dfrac{1}{k} - \dfrac{1}{{k + 2}}} \right)$ According to Exercise 35: $\mathop \sum \limits_{k = 1}^\infty \left( {\dfrac{1}{k} - \dfrac{1}{{k + 2}}} \right) = \dfrac{3}{2}$. Therefore, $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{k\left( {k + 2} \right)}} = \dfrac{1}{2}\mathop \sum \limits_{k = 1}^\infty \left( {\dfrac{1}{k} - \dfrac{1}{{k + 2}}} \right) = \dfrac{1}{2}\cdot\dfrac{3}{2} = \dfrac{3}{4}$ Hence, $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{k\left( {k + 2} \right)}} = \dfrac{1}{{1\cdot3}} + \dfrac{1}{{2\cdot4}} + \dfrac{1}{{3\cdot5}} + \cdot\cdot\cdot = \dfrac{3}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.