Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.3 Infinite Series - Exercises Set 9.3 - Page 622: 30

Answer

See proof

Work Step by Step

(a) We have the series $\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{x^k}$. Write $\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{x^k} = \mathop \sum \limits_{k = 0}^\infty {\left( { - x} \right)^k}$ If $ - 1 \lt \left( { - x} \right) \lt 1$, by 9.3.3 Theorem the series $\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{x^k} = \mathop \sum \limits_{k = 0}^\infty {\left( { - x} \right)^k}$ converges, where $a=1$ and $\left| r \right| = \left| { - x} \right| \lt 1$. Thus, $\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{x^k} = \mathop \sum \limits_{k = 0}^\infty {\left( { - x} \right)^k} = \dfrac{1}{{1 - \left( { - x} \right)}} = \dfrac{1}{{1 + x}}$ Hence, $\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{x^k} = \dfrac{1}{{1 + x}}$ ${\ \ \ }$ if $ - 1 \lt x \lt 1$. (b) We have the series $\mathop \sum \limits_{k = 0}^\infty {\left( {x - 3} \right)^k}$. Write $r=x-3$. So, the series can be rewritten as $\mathop \sum \limits_{k = 0}^\infty {\left( {x - 3} \right)^k} = \mathop \sum \limits_{k = 0}^\infty {r^k}$ If $ - 1 \lt r \lt 1$, by 9.3.3 Theorem the series $\mathop \sum \limits_{k = 0}^\infty {\left( {x - 3} \right)^k} = \mathop \sum \limits_{k = 0}^\infty {r^k}$ converges, where $a=1$ and $\left| r \right| = \left| {x - 3} \right| \lt 1$. Thus, $\mathop \sum \limits_{k = 0}^\infty {\left( {x - 3} \right)^k} = \mathop \sum \limits_{k = 0}^\infty {r^k} = \dfrac{1}{{1 - \left( {x - 3} \right)}} = \dfrac{1}{{4 - x}}$ Since $\left| r \right| = \left| {x - 3} \right| \lt 1$, so $ - 1 \lt x - 3 \lt 1$ $2 \lt x \lt 4$ Hence, $\mathop \sum \limits_{k = 0}^\infty {\left( {x - 3} \right)^k} = \dfrac{1}{{4 - x}}$ ${\ \ \ }$ if $2 \lt x \lt 4$. (c) We have the series $\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{x^{2k}}$. Write $\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{x^{2k}} = \mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{\left( {{x^2}} \right)^k} = \mathop \sum \limits_{k = 0}^\infty {\left( { - {x^2}} \right)^k}$ If $ - 1 \lt \left( { - {x^2}} \right) \lt 1$, by 9.3.3 Theorem the series $\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{x^{2k}} = \mathop \sum \limits_{k = 0}^\infty {\left( { - {x^2}} \right)^k}$ converges, where $a=1$ and $\left| r \right| = \left| { - {x^2}} \right| \lt 1$. Thus, $\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{x^{2k}} = \mathop \sum \limits_{k = 0}^\infty {\left( { - {x^2}} \right)^k} = \dfrac{1}{{1 - \left( { - {x^2}} \right)}} = \dfrac{1}{{1 + {x^2}}}$ Since $\left| r \right| = \left| { - {x^2}} \right| \lt 1$, so $ - 1 \lt x \lt 1$. Hence, $\mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}{x^{2k}} = \dfrac{1}{{1 + {x^2}}}$ ${\ \ \ }$ if $ - 1 \lt x \lt 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.