Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.3 Infinite Series - Exercises Set 9.3 - Page 622: 29

Answer

(a) ${s_n}=\mathop \sum \limits_{k = 1}^n \ln \dfrac{k}{{k + 1}} = - \ln \left( {n + 1} \right)$ The series diverges. (b) ${s_n}=\ln \dfrac{1}{2} - \ln \dfrac{{n + 1}}{{n + 2}}$ The series converges and its sum is $-\ln 2$.

Work Step by Step

(a) We have the series: $\mathop \sum \limits_{k = 1}^\infty \ln \dfrac{k}{{k + 1}} = \ln \dfrac{1}{2} + \ln \dfrac{2}{3} + \ln \dfrac{3}{4} + \cdot\cdot\cdot + \ln \dfrac{k}{{k + 1}} + \cdot\cdot\cdot$ 1. Find a closed form of ${s_n}$ The series can be rewritten as $\mathop \sum \limits_{k = 1}^\infty \ln \dfrac{k}{{k + 1}} = \left( {\ln 1 - \ln 2} \right) + \left( {\ln 2 - \ln 3} \right) + \left( {\ln 3 - \ln 4} \right) + \cdot\cdot\cdot + \left( {\ln k - \ln \left( {k + 1} \right)} \right) + \cdot\cdot\cdot$ We then obtain the $n$th partial sums: ${s_n} = \mathop \sum \limits_{k = 1}^n \ln \dfrac{k}{{k + 1}} = 0 + \left( { - \ln 2 + \ln 2} \right) + \left( { - \ln 3 + \ln 3} \right) + \cdot\cdot\cdot + \left( { - \ln n + \ln n} \right) - \ln \left( {n + 1} \right)$ Thus, $\mathop \sum \limits_{k = 1}^n \ln \dfrac{k}{{k + 1}} = - \ln \left( {n + 1} \right)$ The right-hand side of the equality is a closed form of ${s_n}$. 2. Evaluate the limit $\mathop {\lim }\limits_{n \to \infty } {s_n} = - \mathop {\lim }\limits_{n \to \infty } \ln \left( {n + 1} \right) = - \infty $ The limit does not exist. So, the series diverges. (b) We have the series: $\mathop \sum \limits_{k = 1}^\infty \ln \left( {1 - \dfrac{1}{{{{\left( {k + 1} \right)}^2}}}} \right) = \ln \left( {1 - \dfrac{1}{4}} \right) + \ln \left( {1 - \dfrac{1}{9}} \right) + \ln \left( {1 - \dfrac{1}{{16}}} \right) + \cdot\cdot\cdot + \ln \left( {1 - \dfrac{1}{{{{\left( {k + 1} \right)}^2}}}} \right) + \cdot\cdot\cdot$ 1. Find a closed form of ${s_n}$ Write $1 - \dfrac{1}{{{{\left( {k + 1} \right)}^2}}} = \dfrac{{{k^2} + 2k}}{{{{\left( {k + 1} \right)}^2}}} = \dfrac{{k\left( {k + 2} \right)}}{{{{\left( {k + 1} \right)}^2}}} = \dfrac{k}{{\left( {k + 1} \right)}}\cdot\dfrac{{k + 2}}{{\left( {k + 1} \right)}}$ So, the $n$th partial sums of the series can be rewritten as ${s_n} = \mathop \sum \limits_{k = 1}^n \ln \left( {1 - \dfrac{1}{{{{\left( {k + 1} \right)}^2}}}} \right) = \mathop \sum \limits_{k = 1}^n \ln \left( {\dfrac{k}{{\left( {k + 1} \right)}}\cdot\dfrac{{k + 2}}{{\left( {k + 1} \right)}}} \right) = \mathop \sum \limits_{k = 1}^n \left( {\ln \dfrac{k}{{k + 1}} + \ln \dfrac{{k + 2}}{{k + 1}}} \right)$ ${s_n} = \mathop \sum \limits_{k = 1}^n \left( {\ln \dfrac{k}{{k + 1}} - \ln \dfrac{{k + 1}}{{k + 2}}} \right)$ ${s_n} = \left( {\ln \dfrac{1}{2} - \ln \dfrac{2}{3}} \right) + \left( {\ln \dfrac{2}{3} - \ln \dfrac{3}{4}} \right) + \left( {\ln \dfrac{3}{4} - \ln \dfrac{4}{5}} \right) + \cdot\cdot\cdot + \left( {\ln \dfrac{n}{{n + 1}} - \ln \dfrac{{n + 1}}{{n + 2}}} \right)$ ${s_n} = \ln \dfrac{1}{2} + \left( { - \ln \dfrac{2}{3} + \ln \dfrac{2}{3}} \right) + \left( { - \ln \dfrac{3}{4} + \ln \dfrac{3}{4}} \right) + \left( { - \ln \dfrac{4}{5} + \ln \dfrac{4}{5}} \right) + \cdot\cdot\cdot + \left( { - \ln \dfrac{n}{{n + 1}} + \ln \dfrac{n}{{n + 1}}} \right) - \ln \dfrac{{n + 1}}{{n + 2}}$ ${s_n} = \ln \dfrac{1}{2} - \ln \dfrac{{n + 1}}{{n + 2}}$ The right-hand side of the equality is a closed form of ${s_n}$. 2. Evaluate the limit $\mathop {\lim }\limits_{n \to \infty } {s_n} = \mathop {\lim }\limits_{n \to \infty } \left( {\ln \dfrac{1}{2} - \ln \dfrac{{n + 1}}{{n + 2}}} \right) = \ln \dfrac{1}{2} - \ln \left( {\mathop {\lim }\limits_{n \to \infty } \dfrac{{1 + \dfrac{1}{n}}}{{1 + \dfrac{2}{n}}}} \right)$ $\mathop {\lim }\limits_{n \to \infty } {s_n} = \ln \dfrac{1}{2} - \ln 1 = \ln \dfrac{1}{2}$ Thus, the series converges and its sum is $\ln \frac{1}{2}=-\ln 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.