Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.3 Infinite Series - Exercises Set 9.3 - Page 622: 34

Answer

See proof

Work Step by Step

Write $\dfrac{{\sqrt {k + 1} - \sqrt k }}{{\sqrt {{k^2} + k} }} = \dfrac{{\sqrt {k + 1} }}{{\sqrt {{k^2} + k} }} - \dfrac{{\sqrt k }}{{\sqrt {{k^2} + k} }} = \dfrac{{\sqrt {k + 1} }}{{\sqrt k \sqrt {k + 1} }} - \dfrac{{\sqrt k }}{{\sqrt k \sqrt {k + 1} }} = \dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}$ Thus, the $n$th partial sums of the series can be written as $\mathop \sum \limits_{k = 1}^n \dfrac{{\sqrt {k + 1} - \sqrt k }}{{\sqrt {{k^2} + k} }} = \mathop \sum \limits_{k = 1}^n \left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)$ $ = \left( {1 - \dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 3 }}} \right) + \left( {\dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 4 }}} \right) + \cdot\cdot\cdot + \left( {\dfrac{1}{{\sqrt n }} - \dfrac{1}{{\sqrt {n + 1} }}} \right)$ $ = 1 + \left( { - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}} \right) + \left( { - \dfrac{1}{{\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}} \right) + \cdot\cdot\cdot + \left( { - \dfrac{1}{{\sqrt n }} + \dfrac{1}{{\sqrt n }}} \right) - \dfrac{1}{{\sqrt {n + 1} }}$ $\mathop \sum \limits_{k = 1}^n \dfrac{{\sqrt {k + 1} - \sqrt k }}{{\sqrt {{k^2} + k} }} = 1 - \dfrac{1}{{\sqrt {n + 1} }}$ Taking the limit: $\mathop \sum \limits_{k = 1}^\infty \dfrac{{\sqrt {k + 1} - \sqrt k }}{{\sqrt {{k^2} + k} }} = \mathop {\lim }\limits_{n \to \infty } \left( {1 - \dfrac{1}{{\sqrt {n + 1} }}} \right) = 1$ Hence, $\mathop \sum \limits_{k = 1}^\infty \dfrac{{\sqrt {k + 1} - \sqrt k }}{{\sqrt {{k^2} + k} }} = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.