Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.3 Infinite Series - Exercises Set 9.3 - Page 621: 8

Answer

convergent $S=\dfrac{1}{2}$

Work Step by Step

Given $$ \sum_{k=1}^{\infty} \frac{1}{2^k}-\frac{1}{2^{k+1}}= \sum_{k=1}^{\infty} \frac{2-1}{2^{k+1}}=\sum_{k=1}^{\infty}\left( \frac{1}{2} \right)^{k+1}$$ This is a geometric series with $|r|=\frac{1}{2}<1$, so $\displaystyle \sum_{k=1}^{\infty}\left( \frac{1}{2} \right)^{k+1}$ is a convergent series. To find the sum, since $a=(1/2)^2=\dfrac{1}{4}$, then \begin{align*} S&=\frac{a}{1-r}\\ &=\frac{\frac{1}{4}}{1-\frac{1}{2}}\\ &=\frac{1}{2} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.