Answer
Convergence
$S=\dfrac{4}{7}$
Work Step by Step
Given $$ \sum_{k=1}^{\infty} \left(\frac{-3}{4}\right)^{k-1}$$
This is a geometric series with $|r|=\frac{3}{4}<1$ , so $\displaystyle \sum_{k=1}^{\infty} \left(\frac{-3}{4}\right)^{k-1}$ is a convergent series.
To find sum, since $a=(-3/4)^0=1$, then
\begin{align*}
S&=\frac{a}{1-r}\\
&=\frac{1}{1+\frac{3}{4}}\\
&=\frac{4}{7}
\end{align*}