Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.5 L'Hopital's Rule; Indeterminate Forms - Exercises Set 6.5 - Page 448: 44

Answer

$$\left( {\bf{a}} \right)\mathop {\lim }\limits_{x \to + \infty } \frac{{\ln x}}{{{x^n}}} = 0{\text{ and }}\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^n}}}{{\ln x}} = + \infty {\text{ Proved}}$$

Work Step by Step

$$\eqalign{ & \left( {\text{a}} \right)\mathop {\lim }\limits_{x \to + \infty } \frac{{\ln x}}{{{x^n}}} = 0,{\text{ }}n{\text{ is any positive integer}} \cr & {\text{Evaluating the limit}} \cr & \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln x}}{{{x^n}}} = \frac{{\ln \left( { + \infty } \right)}}{{{{\left( { + \infty } \right)}^n}}} = \frac{\infty }{\infty } \cr & {\text{Apply the L'Hopital's rule}} \cr & \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln x}}{{{x^n}}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{d}{{dx}}\left[ {\ln x} \right]}}{{\frac{d}{{dx}}\left[ {{x^n}} \right]}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{1}{x}}}{{n{x^{n - 1}}}} \cr & \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{1}{x}}}{{n{x^{n - 1}}}} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{n{x^n}}} \cr & {\text{Evaluating}} \cr & \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{n{x^n}}} = \frac{1}{{n{{\left( { + \infty } \right)}^n}}} = \frac{1}{\infty } = 0 \cr & \cr & \left( {\text{b}} \right)\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^n}}}{{\ln x}} = + \infty \cr & {\text{Evaluating the limit}} \cr & \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^n}}}{{\ln x}} = \frac{{{{\left( { + \infty } \right)}^n}}}{{\ln \left( { + \infty } \right)}} = \frac{\infty }{\infty } \cr & {\text{Apply the L'Hopital's rule}} \cr & \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^n}}}{{\ln x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{d}{{dx}}\left[ {{x^n}} \right]}}{{\frac{d}{{dx}}\left[ {\ln x} \right]}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{n{x^{n - 1}}}}{{\frac{1}{x}}} \cr & \frac{{{x^n}}}{{\ln x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{n{x^n}}}{1} = \mathop {\lim }\limits_{x \to + \infty } n{x^n} \cr & {\text{Evaluating}} \cr & \mathop {\lim }\limits_{x \to + \infty } n{x^n} = + \infty \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.