Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.5 L'Hopital's Rule; Indeterminate Forms - Exercises Set 6.5 - Page 448: 20

Answer

$-2$

Work Step by Step

Our aim is to evaluate the limit for $\lim\limits_{x \to \pi^{-}} (x-\pi)\tan (\dfrac{x}{2})=\lim\limits_{x \to \pi^{-}} \dfrac{(x-\pi)}{\cot (x/2)}$. But $\lim\limits_{x \to \pi^{-}} \dfrac{(x-\pi)}{\cot (x/2)}=\dfrac{0}{0}$ We can see that the numerator and denominator have a limit of $\infty$, so the limit shows the indeterminate form of type $\dfrac{0}{0}$. So, we will apply L'Hopital's rule which can be defined as: $\lim\limits_{x \to a} \dfrac{P(x) }{Q(x)}=\lim\limits_{x \to a}\dfrac{P'(x)}{Q'(x)}$ where, $a$ can be any real number, infinity or negative infinity. $\lim\limits_{x \to \pi^{-}} \dfrac{ \dfrac{d}{dx} (x-\pi)}{ \dfrac{d}{dx} \cot (x/2)}]=\lim\limits_{x \to \pi^{-}} \dfrac{1}{-\csc^2 (x/2)\times (1/2)} \\ =\dfrac{-2}{\csc^2 (\pi/2)}\\=-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.