Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.5 L'Hopital's Rule; Indeterminate Forms - Exercises Set 6.5 - Page 448: 16

Answer

$0$

Work Step by Step

Our aim is to evaluate the limit for $\lim\limits_{x \to 0^{+}} \dfrac{1-\ln x}{e^{1/x}}$. But $\lim\limits_{x \to 0^{+}} \dfrac{1-\ln x}{e^{1/x}}=\dfrac{\infty}{\infty}$ We can see that the numerator and denominator have a limit of $\infty$, so the limit shows the indeterminate form of type $\dfrac{\infty}{\infty}$. So, we will apply L'Hopital's rule which can be defined as: $\lim\limits_{x \to a} \dfrac{A(x) }{B(x)}=\lim\limits_{x \to a}\dfrac{A'(x)}{B'(x)}$ where, $a$ can be any real number, infinity or negative infinity. $\lim\limits_{x \to 0^{+}} \dfrac{1-\ln x}{e^{1/x}}=\lim\limits_{x \to 0^{+}} \dfrac{-1/x}{(-1/x^2) (e^{1/x})} \\= \lim\limits_{x \to 0^{+}} \dfrac{e^{-1/x}}{1/x}=\dfrac{\infty}{\infty}$ Again apply L'Hopital's rule : $ \lim\limits_{x \to 0^{+}} \dfrac{e^{-1/x}}{1/x}= - \lim\limits_{x \to 0^{+}} e^{-1/x}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.