Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.5 L'Hopital's Rule; Indeterminate Forms - Exercises Set 6.5 - Page 448: 18

Answer

$1$

Work Step by Step

Our aim is to evaluate the limit for $\lim\limits_{x \to 0^{+}} \dfrac{ \ln (\sin x)}{\ln (\tan x)}$. But $\lim\limits_{x \to 0^{+}} \dfrac{ \ln (\sin x)}{\ln (\tan x)}=\dfrac{\infty}{\infty}$ We can see that the numerator and denominator have a limit of $\infty$, so the limit shows the indeterminate form of type $\dfrac{\infty}{\infty}$. So, we will apply L'Hopital's rule which can be defined as: $\lim\limits_{x \to a} \dfrac{P(x) }{Q(x)}=\lim\limits_{x \to a}\dfrac{P'(x)}{Q'(x)}$ where, $a$ can be any real number, infinity or negative infinity. $\lim\limits_{x \to 0^{+}} \dfrac{ \dfrac{d}{dx} \ln (\sin x)}{\dfrac{d}{dx} \ln (\tan x)}=\lim\limits_{x \to 0^{+}} \dfrac{(1/\sin x) \cos x}{(1/\tan x) \sec^2 x}\\ =\lim\limits_{x \to 0^{+}} \dfrac{\cot x}{\cot x \sec^2 x}=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.