Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.5 L'Hopital's Rule; Indeterminate Forms - Exercises Set 6.5 - Page 448: 43

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to \pi /{2^ - }} {\left( {\tan x} \right)^{\left( {\pi /2} \right) - x}} \cr & {\text{Evaluating}} \cr & \mathop {\lim }\limits_{x \to \pi /{2^ - }} {\left( {\tan x} \right)^{\left( {\pi /2} \right) - x}} = {\left( {\tan \frac{\pi }{2}} \right)^{\left( {\pi /2} \right) - \pi /2}} = {\infty ^0} \cr & {\text{This limit has the form }}{\infty ^0}.{\text{ }} \cr & {\left( {\tan x} \right)^{\left( {\pi /2} \right) - x}} = {e^{\left( {\frac{\pi }{2} - x} \right)\ln \left( {\tan x} \right)}},{\text{ then}} \cr & \mathop {\lim }\limits_{x \to \pi /{2^ - }} {\left( {\tan x} \right)^{\left( {\pi /2} \right) - x}} = \mathop {\lim }\limits_{x \to \pi /{2^ - }} {e^{\left( {\frac{\pi }{2} - x} \right)\ln \left( {\tan x} \right)}} = {e^{\mathop {\lim }\limits_{x \to \pi /{2^ - }} \left( {\frac{\pi }{2} - x} \right)\ln \left( {\tan x} \right)}} \cr & {\text{The first step is to evaluate }} \cr & L = \mathop {\lim }\limits_{x \to \pi /{2^ - }} \left( {\frac{\pi }{2} - x} \right)\ln \left( {\tan x} \right) = \mathop {\lim }\limits_{x \to \pi /{2^ - }} \frac{{\ln \left( {\tan x} \right)}}{{\frac{1}{{\left( {\pi /2 - x} \right)}}}} = \frac{\infty }{\infty } \cr & {\text{Using the L'Hopital's rule}} \cr & L = \mathop {\lim }\limits_{x \to \pi /{2^ - }} \frac{{\ln \left( {\tan x} \right)}}{{\frac{1}{{\left( {\pi /2 - x} \right)}}}} = \mathop {\lim }\limits_{x \to \pi /{2^ - }} \frac{{\frac{{{{\sec }^2}x}}{{\tan x}}}}{{\frac{1}{{{{\left( {\pi /2 - x} \right)}^2}}}}} \cr & L = \mathop {\lim }\limits_{x \to \pi /{2^ - }} \frac{{{{\left( {\pi /2 - x} \right)}^2}}}{4}\left( {\frac{1}{{\sin x}}} \right)\left( {\frac{1}{{\cos x}}} \right) \cr & L = \mathop {\lim }\limits_{x \to \pi /{2^ - }} \frac{{\pi /2 - x}}{{\sin x}}\mathop {\lim }\limits_{x \to \pi /{2^ - }} \frac{{\pi /2 - x}}{{\cos x}} \cr & L = \mathop {\lim }\limits_{x \to \pi /{2^ - }} \frac{{\pi /2 - x}}{{\sin x}}\mathop {\lim }\limits_{x \to \pi /{2^ - }} \frac{{\pi /2 - x}}{{\cos x}} \cr & L = \mathop {\lim }\limits_{x \to \pi /{2^ - }} \frac{{\pi /2 - x}}{{\sin x}}\mathop {\lim }\limits_{x \to \pi /{2^ - }} \frac{{ - 1}}{{\sin x}} \cr & {\text{Evaluating}} \cr & L = \left( {\frac{{\pi /2 - \pi /2}}{{\sin \pi /2}}} \right)\left( {\frac{{ - 1}}{{\sin \pi /2}}} \right) \cr & L = 0\left( { - 1} \right) \cr & L = 0 \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{x \to \pi /{2^ - }} {\left( {\tan x} \right)^{\left( {\pi /2} \right) - x}} = \mathop {\lim }\limits_{x \to \pi /{2^ - }} {e^{\left( {\frac{\pi }{2} - x} \right)\ln \left( {\tan x} \right)}} = {e^{\mathop {\lim }\limits_{x \to \pi /{2^ - }} \left( {\frac{\pi }{2} - x} \right)\ln \left( {\tan x} \right)}} \cr & \mathop {\lim }\limits_{x \to \pi /{2^ - }} {\left( {\tan x} \right)^{\left( {\pi /2} \right) - x}} = {e^0} \cr & \mathop {\lim }\limits_{x \to \pi /{2^ - }} {\left( {\tan x} \right)^{\left( {\pi /2} \right) - x}} = 1 \cr & \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.