Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 329: 9

Answer

(b) Displacement $=-1 \mathrm{m}$ and $\mathrm{Distance}=3 \mathrm{m}$ (a) Displacement $=1 \mathrm{m}$ and $\mathrm{Distance}=1 \mathrm{m}$

Work Step by Step

You have $\sin t=v(t), 0 \leq t \leq \frac{\pi}{2}$ Deplacement $s(t)=\int_{0}^{\frac{\pi}{2}} \sin t d t=-\left.\cos t\right|_{0} ^{\frac{\pi}{2}}=-\left(\cos \frac{\pi}{2}-\cos 0\right)=1 m$ Distance $: \int_{0}^{\frac{\pi}{2}}|\sin t| d t=\int_{0}^{\frac{\pi}{2}} \sin t d t=-\left.\cos t\right|_{0} ^{\frac{\pi}{2}}=-\left(\cos \frac{\pi}{2}-\cos 0\right)=-1 m$ We have $v(t)=\cos t, \frac{\pi}{2} \leq t \leq 2 \pi$ Deplacement : $s(t)=\int_{\frac{\pi}{2}}^{2 \pi} \cos t d t=\left.\sin t\right|_{\frac{\tau}{2}} ^{2 \pi}=\left(\sin 2 \pi-\sin \frac{\pi}{2}\right)=-1 m$ Distance : $$ \begin{aligned} \int_{\frac{x}{2}}^{2 \pi}|\cos t| d t &=-\int_{\frac{x}{2}}^{\frac{3 x}{2}} \cos t d t+\int_{\frac{3 \pi}{2}}^{0} \cos t d t \\ &=\left.\sin t\right|_{\frac{\pi}{2}} ^{\frac{3 \pi}{2}}+\left.\sin t\right|_{\frac{1 \pi}{2}} ^{2 \pi} \\ &=1-(-2)=[3 m] \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.