Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 329: 6

Answer

(a) $t-\cos t-2=s(t)$ (b) $\frac{t^{4}}{12}-\frac{t^{3}}{2}+\frac{t^{2}}{2}=s(t)$

Work Step by Step

(a)You have $\sin t+1=v(t)$ $$ \begin{aligned} \therefore \int(\sin t+1) d t=s(t) & \\ &=t-\cos t+C \\ s(0) &=0-1+C \\ C-1=-3 & \\ \therefore -2=C & \\ t-\cos t-2=s(t) & \end{aligned} $$ (b) You have $t^{2}-3 t+1=a(t)$ $$ \begin{aligned} \therefore \int\left(t^{2}-3 t+1\right) d t =v(t) &\\ &=\frac{t^{3}}{3}-\frac{3 t^{2}}{2}+t+C \\ 0-0+0+C=v(0) & \end{aligned} $$ $$ \begin{array}{l} \therefore 0=C \\ \qquad v(t)=\frac{t^{3}}{3}-\frac{3 t^{2}}{2}+t \end{array} $$ We will find the position $s(t)$ $$ \begin{array}{l} \begin{aligned} \int\left(\frac{t^{3}}{3}-\frac{3 t^{2}}{2}+t\right) d t=s(t) & \\ &=\frac{t^{4}}{12}-\frac{t^{3}}{2}+\frac{t^{2}}{2}+C \end{aligned} \\ 0-0+0+C=s(0) \\ 0=C \\ \therefore \frac{t^{4}}{12}-\frac{t^{3}}{2}+\frac{t^{2}}{2}=s(t) \end{array} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.