Answer
$$\eqalign{
& \left( {\text{a}} \right)s\left( t \right) = \frac{3}{5}{t^{5/3}} + \frac{{96}}{5} \cr
& \left( {\text{b}} \right)s\left( t \right) = \frac{4}{{15}}{t^{5/2}} - \frac{{13}}{3}t + \frac{{19}}{5} \cr} $$
Work Step by Step
$$\eqalign{
& \left( {\text{a}} \right){\text{ }}v\left( t \right) = {t^{2/3}};{\text{ }}s\left( 8 \right) = 0 \cr
& s\left( t \right) = \int {v\left( t \right)} dt \cr
& s\left( t \right) = \int {\left( {{t^{2/3}}} \right)} dt \cr
& s\left( t \right) = \frac{3}{5}{t^{5/3}} + C \cr
& {\text{Use the initial condition }}s\left( 8 \right) = 0 \cr
& 0 = \frac{3}{5}{\left( 8 \right)^{5/3}} + C \cr
& C = \frac{{96}}{5} \cr
& {\text{Then,}} \cr
& s\left( t \right) = \frac{3}{5}{t^{5/3}} + \frac{{96}}{5} \cr
& \cr
& \left( {\text{b}} \right){\text{ }}a\left( t \right) = \sqrt t ;{\text{ }}v\left( 4 \right) = 1;{\text{ }}s\left( 4 \right) = - 5; \cr
& v\left( t \right) = \int {a\left( t \right)} dt \cr
& v\left( t \right) = \int {{t^{1/2}}} dt \cr
& v\left( t \right) = \frac{2}{3}{t^{3/2}} + C \cr
& {\text{Use the initial condition }}v\left( 1 \right) = 0 \cr
& 1 = \frac{2}{3}{\left( 4 \right)^{3/2}} + C \cr
& C = - \frac{{13}}{3} \cr
& {\text{Then,}} \cr
& v\left( t \right) = \frac{2}{3}{t^{3/2}} - \frac{{13}}{3} \cr
& s\left( t \right) = \int {v\left( t \right)} dt \cr
& s\left( t \right) = \int {\left( {\frac{2}{3}{t^{3/2}} - \frac{{13}}{3}} \right)} dt \cr
& s\left( t \right) = \frac{4}{{15}}{t^{5/2}} - \frac{{13}}{3}t + C \cr
& {\text{Use the initial condition }}s\left( 4 \right) = - 5 \cr
& - 5 = \frac{4}{{15}}{\left( 4 \right)^{5/2}} - \frac{{13}}{3}\left( 4 \right) + C \cr
& - 5 = \frac{{128}}{{15}} - \frac{{52}}{3} + C \cr
& C = \frac{{19}}{5} \cr
& {\text{Then,}} \cr
& s\left( t \right) = \frac{4}{{15}}{t^{5/2}} - \frac{{13}}{3}t + \frac{{19}}{5} \cr} $$