Answer
$$\eqalign{
& \left( {\text{a}} \right)s\left( t \right) = \frac{3}{2}{t^2} + t - 4 \cr
& \left( {\text{b}} \right)s\left( t \right) = \frac{1}{t} + t \cr} $$
Work Step by Step
$$\eqalign{
& \left( {\text{a}} \right){\text{ }}v\left( t \right) = 3t + 1;{\text{ }}s\left( 2 \right) = 4 \cr
& s\left( t \right) = \int {v\left( t \right)} dt \cr
& s\left( t \right) = \int {\left( {3t + 1} \right)} dt \cr
& s\left( t \right) = \frac{3}{2}{t^2} + t + C \cr
& {\text{Use the initial condition }}s\left( 2 \right) = 4 \cr
& 4 = \frac{3}{2}{\left( 2 \right)^2} + 2 + C \cr
& C = - 4 \cr
& {\text{Then,}} \cr
& s\left( t \right) = \frac{3}{2}{t^2} + t - 4 \cr
& \cr
& \left( {\text{b}} \right){\text{ }}a\left( t \right) = 2{t^{ - 3}};{\text{ }}v\left( 1 \right) = 0;{\text{ }}s\left( 1 \right) = 2; \cr
& v\left( t \right) = \int {a\left( t \right)} dt \cr
& v\left( t \right) = \int {2{t^{ - 3}}} dt \cr
& v\left( t \right) = - {t^{ - 2}} + C \cr
& {\text{Use the initial condition }}v\left( 1 \right) = 0 \cr
& 0 = - {\left( 1 \right)^{ - 2}} + C \cr
& C = 1 \cr
& {\text{Then,}} \cr
& v\left( t \right) = - {t^{ - 2}} + 1 \cr
& s\left( t \right) = \int {v\left( t \right)} dt \cr
& s\left( t \right) = \int {\left( { - {t^{ - 2}} + 1} \right)} dt \cr
& s\left( t \right) = \frac{1}{t} + t + C \cr
& {\text{Use the initial condition }}s\left( 1 \right) = 2 \cr
& 2 = \frac{1}{1} + 1 + C \cr
& C = 0 \cr
& {\text{Then,}} \cr
& s\left( t \right) = \frac{1}{t} + t \cr} $$