Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - Chapter 13 Review Exercises - Page 998: 19

Answer

\[ 2=y^{\prime}(0) \]

Work Step by Step

We find: $\frac{\partial z}{\partial x}(1,2)=4, \frac{\partial z}{\partial y}(1,2)=2$ Also, $x=x(t), y=y(t)$ are differentiable functions of $t$ with $1=x(0), 2=y(0), x^{\prime}(0)=-\frac{1}{2}\ \text{and} \ 2=z^{\prime}(0)$ \[ \begin{array}{c} z^{\prime}(t)=\frac{d z}{d t}=\frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t} \\ z^{\prime}(t)=\frac{d z}{d t}=\frac{\partial z}{\partial x} \cdot x^{\prime}(t)+\frac{\partial z}{\partial y} \cdot y^{\prime}(t) \\ z^{\prime}(0)=\frac{\partial z}{\partial x}(1,2) \cdot x^{\prime}(0)+\frac{\partial z}{\partial y}(1,2) \cdot y^{\prime}(0) \\ (4) \cdot-\frac{1}{2}+2 \cdot y^{\prime}(0) =2\\ \therefore\left[2=y^{\prime}(0)\right] \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.