Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - Chapter 13 Review Exercises - Page 998: 13

Answer

True

Work Step by Step

\[ 2 z^{3}-3\left(x^{2}+y^{2}\right) z=F(x, y, z) \] We will find the first derivatives: \[ \begin{array}{c} F_{x}=\frac{\partial F}{\partial x}=-6 z x \\ F_{y}=\frac{\partial F}{\partial y}=-6 z y \\ F_{y}=\frac{\partial F}{\partial x}=-3\left(x^{2}+y^{2}\right)+6 z^{2} \end{array} \] We will find the second derivative: \[ \begin{array}{l} F_{x x}=\frac{\partial^{2} F}{\partial x^{2}}=\frac{\partial(-6 x z)}{\partial y}=-6 z \\ F_{y y}=\frac{\partial^{2} F}{\partial y^{2}}=\frac{\partial(-6 y z)}{\partial y}=-6 z \\ F_{z z}=\frac{\partial^{2} F}{\partial x^{2}}=\frac{\partial\left(6 z^{2}-3\left(x^{2}+y^{2}\right)\right.}{\partial y}=12 z \end{array} \] $0=-6z-6z+12z=F_{x x}+F_{y y}+F_{z z}$ And then F satisfies the equation $0=F_{x x}+F_{y y}+F_{z z}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.