Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - Chapter 13 Review Exercises - Page 998: 11

Answer

The answer is below.

Work Step by Step

Given \[ \tan \left(y^{2}+x^{2}\right)=w \] and then \[ \sec ^{2}\left(y^{2}+x^{2}\right) \cdot 2 x=w_{x} \] and \[ \begin{array}{c} w_{x y}=2 \sec \left(x^{2}+y^{2}\right) \cdot \sec \left(x^{2}+y^{2}\right) \tan \left(x^{2}+y^{2}\right) \cdot 2 y \cdot 2 x \\ =8 x y \sec ^{2}\left(x^{2}+y^{2}\right) \tan \left(x^{2}+y^{2}\right) \end{array} \] On the other hand, \[ \sec ^{2}\left(x^{2}+y^{2}\right) \cdot 2 y=w_{y} \] , \[ \begin{array}{c} 2 \sec \left(x^{2}+y^{2}\right) \cdot \sec \left(x^{2}+y^{2}\right) \tan \left(x^{2}+y^{2}\right) \cdot 2 x \cdot 2 y =w_{y x}\\ =8 x y \sec ^{2}\left(x^{2}+y^{2}\right) \tan \left(x^{2}+y^{2}\right) \end{array} \] Thus, the given statement is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.