Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - Chapter 13 Review Exercises - Page 998: 14

Answer

True

Work Step by Step

\[ x y z+x^{2}+\ln \left(\frac{y}{z}\right)=f(x, y, z) \] 1. \[ \frac{\partial f}{\partial x}=y z+2 x=f_{x} \] 2. \[ f_{x y}=\frac{\partial^{2} f}{\partial x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial f}{\partial y}(y ;+2 x)=z \] 3. \[ f_{x y z}=\frac{\partial^{3} f}{\partial: y x}=\frac{\partial}{\partial z}\left(\frac{\partial}{\partial y}\left(\frac{\partial}{\partial x} f\right)\right)=\frac{\partial}{\partial z} z=1 \] 4. \[ \begin{aligned} f_{x y z x}=& \frac{\partial^{4} f}{\partial x_{2} y x}=\frac{\partial}{\partial x} 1=0 \\ & \therefore {f_{x y z x}=0} \end{aligned} \] To find $f_{2 x x y}$, we will find 1. \[ f_{z}=\frac{\partial f}{\partial z}=x y-\frac{1}{z} \] 2. \[ f_{z x}=\frac{\partial^{2} f}{\partial x z}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial z}\right)=\frac{\partial f}{\partial x}\left(x y-\frac{1}{z}\right)=y \] 3. \[ f_{x x x}=\frac{\partial^{3} f}{\partial x x z}=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}\left(\frac{\partial}{\partial z} f\right)\right)=\frac{\partial}{\partial x} y=0 \] 4. \[ \begin{aligned} f_{x y z x}=& \frac{\partial^{1} f}{\partial y x x z}=\frac{\partial}{\partial y} 0=0 \\ & \therefore\left[f_{z x x y}=0\right. \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.