Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - Chapter 13 Review Exercises - Page 998: 12

Answer

True

Work Step by Step

If \[ \cos (y+x)+\ln (3 x-3 y)=w \] and then \[ \frac{1}{3 x-3 y} \cdot 3-\sin (x+y)=\frac{3}{3 x-3 y}-\sin (y+x)=w_{x} \] , \[ \begin{aligned} \frac{-3}{(3 x-3 y)^{2}} & \cdot 3-\cos (x+y)=\frac{-9}{9(x-y)^{2}}-\cos (x+y)=w_{x x} \\ &=\frac{-1}{(x-y)^{2}}-\cos (x+y) \end{aligned} \] whereas \[ w_{y}=-\sin (x+y)+\frac{1}{3 x-3 y} \cdot(-3)=\frac{-3}{3 x-3 y}-\sin (x+y) \] and \[ \begin{array}{c} \frac{-(-3)}{(3 x-3 y)^{2}} \cdot(-3)-\cos (x+y)=\frac{-9}{9(x-y)^{2}}-\cos (x+y)=w_{y y} \\ =-\cos (y+x)+\frac{-1}{(x-y)^{2}} \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.