Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 947: 21

Answer

\[ 0.1009=\Delta f \] \[ 0.1=d f \]

Work Step by Step

We are given a two variable function $f(x, y)$ and points $P \equiv(1,2)$ and $Q \equiv(1.01,2.04)$ \[ -4 x+x^{2}+2 x y=f(x, y) \] Thus, obtaining partial derivatives to approximate the function by the Local Approximation Theorem \[ L(x, y) \approx f(x+\Delta x, y+\Delta y)=f\left(x_{0}, y_{0}\right)+\int_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \] So $\Delta x=-x_{0}+x$ and $\Delta y=-y_{0}+y$ $ x_{0}=1.01,x=1, y=2,$ and $y_{0}=2.04$ \[ \begin{array}{l} f_{x}(x, y)=\frac{\partial}{\partial x}\left(x^{2}+2 x y-4 x\right) \\ f_{x}(x, y)=2 x+2 y-4 \end{array} \] Similarly, $f_{y}(x, y)$ \[ \begin{aligned} f_{y}(x, y) &=\frac{\partial}{\partial y}\left(x^{2}+2 x y-4 x\right) \\ f_{y}(x, y) &=2 x \\ d f &=f(x+\Delta x, y+\Delta y)-f\left(x_{0}, y_{0}\right) \\ d f &=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\ d f &=(2(1)+2(2)-4)(1.01-1)+2(1)(2.04-2) \\ d f &=0.1 \end{aligned} \] We also find: \[ \begin{aligned} f(1.01,2.04) &=(1.01)^{2}+2(1.01)(2.04)-4(1.01) \\ f(1.01,2.04) &=1.1009 \\ f(1,2) &=(1)^{2}+2(1)(2)-4(1) \\ f(1,2) &=1 \end{aligned} \] Thus, $\Delta f$ is \[ \begin{array}{c} \Delta f=f(1.01,2.04)-f(1,2)=1.1009-1 \\ \Delta f=0.1009 \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.