Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 947: 13

Answer

$$dz = \frac{y}{{1 + {x^2}{y^2}}}dx + \frac{x}{{1 + {x^2}{y^2}}}dy$$

Work Step by Step

$$\eqalign{ & z = {\tan ^{ - 1}}xy \cr & {\text{Let }}z = f\left( {x,y} \right):{\text{ }} \cr & {\text{Calculate the partial derivative }}{f_x}\left( {x,y} \right){\text{, treating }}y{\text{ as a constant}} \cr & {\text{ }}{f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {{{\tan }^{ - 1}}xy} \right] \cr & {\text{use }}\frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right] = \frac{1}{{{u^2} + 1}}\frac{{du}}{{dx}} \cr & {\text{ }}{f_x}\left( {x,y} \right) = \frac{1}{{1 + {{\left( {xy} \right)}^2}}}\frac{\partial }{{\partial x}}\left[ {xy} \right] \cr & {\text{ }}{f_x}\left( {x,y} \right) = \frac{y}{{1 + {x^2}{y^2}}} \cr & {\text{Calculate the partial derivative }}{f_y}\left( {x,y} \right){\text{, treating }}x{\text{ as a constant}} \cr & {\text{ }}{f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {{{\tan }^{ - 1}}xy} \right] \cr & {\text{use }}\frac{d}{{dy}}\left[ {{{\tan }^{ - 1}}u} \right] = \frac{1}{{{u^2} + 1}}\frac{{du}}{{dy}} \cr & {\text{ }}{f_y}\left( {x,y} \right) = \frac{1}{{1 + {{\left( {xy} \right)}^2}}}\frac{\partial }{{\partial y}}\left[ {xy} \right] \cr & {\text{ }}{f_y}\left( {x,y} \right) = \frac{x}{{1 + {x^2}{y^2}}} \cr & \cr & {\text{The total differential of }}z{\text{ is given by }}dz = {f_x}\left( {x,y} \right)dx + {f_y}\left( {x,y} \right)dy \cr & {\text{Substitute the partial derivatives }}{f_x}\left( {x,y} \right){\text{ and }}{f_y}\left( {x,y} \right) \cr & dz = \frac{y}{{1 + {x^2}{y^2}}}dx + \frac{x}{{1 + {x^2}{y^2}}}dy \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.