Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 947: 11

Answer

$$dz = 3{x^2}{y^2}dx + 2{x^3}ydy$$

Work Step by Step

$$\eqalign{ & z = {x^3}{y^2} \cr & {\text{Let }}z = f\left( {x,y} \right):{\text{ }} \cr & {\text{Calculate the partial derivative }}{f_x}\left( {x,y} \right){\text{, treating }}y{\text{ as a constant}} \cr & {\text{ }}{f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {{x^3}{y^2}} \right] \cr & {\text{ }}{f_x}\left( {x,y} \right) = {y^2}\frac{\partial }{{\partial x}}\left[ {{x^3}} \right] \cr & {\text{ }}{f_x}\left( {x,y} \right) = {y^2}\left( {3{x^2}} \right) \cr & {\text{ }}{f_x}\left( {x,y} \right) = 3{x^2}{y^2} \cr & {\text{Calculate the partial derivative }}{f_y}\left( {x,y} \right){\text{, treating }}x{\text{ as a constant}} \cr & {\text{ }}{f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {{x^3}{y^2}} \right] \cr & {\text{ }}{f_y}\left( {x,y} \right) = {x^3}\frac{\partial }{{\partial y}}\left[ {{y^2}} \right] \cr & {\text{ }}{f_y}\left( {x,y} \right) = {x^3}\left( {2y} \right) \cr & {\text{ }}{f_y}\left( {x,y} \right) = 2{x^3}y \cr & \cr & {\text{The total differential of }}z{\text{ is given by }}dz = {f_x}\left( {x,y} \right)dx + {f_y}\left( {x,y} \right)dy \cr & {\text{Substitute the partial derivatives }}{f_x}\left( {x,y} \right){\text{ and }}{f_y}\left( {x,y} \right) \cr & dz = 3{x^2}{y^2}dx + 2{x^3}ydy \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.