Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - Chapter 12 Review Exercises - Page 903: 25

Answer

$\frac{3}{5}$

Work Step by Step

See Theorem $12.5 .2 b$ \[ \begin{array}{c} \kappa(t)=\frac{\left\|\mathrm{r}^{\prime}(t) \times \mathrm{r}^{\prime \prime}(t)\right\|}{\left\|\mathrm{r}^{\prime}(t)\right\|^{3}}=\kappa(0) \\ \mathrm{r}^{\prime}(t)=-2 \sin t \mathrm{i}+3 \cos t \mathrm{j}-\mathrm{k} \quad \mathrm{r}^{\prime}(\pi / 2)=-2 \mathrm{i}-\mathrm{k} \\ \mathrm{r}^{\prime \prime}(t)=-2 \cos t \mathrm{i}-3 \sin t j, \quad \mathrm{r}^{\prime \prime}(\pi / 2)=-3 \mathrm{j} \\ \mathrm{r}^{\prime}(\pi / 2) \times \mathrm{r}^{\prime \prime}(\pi / 2)=\left|\begin{array}{ccc} i & j & k \\ -2 & 0 & -1 \\ 0 & -3 & 0 \end{array}\right|=-3 \mathrm{i}+6 \mathrm{k} \\ \frac{\sqrt{45}}{5^{3 / 2}}=\frac{3 \sqrt{5}}{5^{3 / 2}}=\frac{3}{5}=\kappa(\pi / 2) \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.