Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - Chapter 12 Review Exercises - Page 903: 12

Answer

$f^{\prime}(0)=0+2=2$

Work Step by Step

We find: $r^{\prime}(t)=3 r_{1}^{\prime}(t)+2 r_{2}^{\prime}(t)$ $r^{\prime}(0)=\langle 3,0,3\rangle+\langle 8,0,4\rangle=\langle 11,0,7\rangle$ (b) $r^{\prime}(t)=\frac{1}{t+1} r_{1}(t)+(\ln (t+1)) r_{1}^{\prime}(t)$ $\mathrm{r}^{\prime}(0)=\mathrm{r}_{1}(0)=\langle-1,1,2\rangle$ $(c)$ $\mathrm{r}^{\prime}=\mathrm{r}_{1} \times \mathrm{r}_{2}^{\prime}+\mathrm{r}_{1}^{\prime} \times \mathrm{r}_{2}$ $\langle-11,2\rangle \times\langle 4,0,2\rangle+\langle 1,2,1\rangle \times\{1,0,1\rangle=(0,10,-2)=\mathrm{r}^{\prime}(0)$ $(d)$ $r_{1}(t) \cdot r_{2}^{\prime}(t)+r_{1}^{\prime}(t) \cdot r_{2}(t)=f^{\prime}(t)$ $0+2=2=f^{\prime}(0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.