Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - Chapter 12 Review Exercises - Page 903: 17

Answer

$\frac{15}{4}$

Work Step by Step

Using arc length formulas. \[ \begin{array}{c} \int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}=L \\ \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}=\left(\sqrt{2} c^{\sqrt{2} t}\right)^{2}+\left(-\sqrt{2} c^{-\sqrt{2} t}\right)^{2}+4= \\ =8 \cosh ^{2}(\sqrt{2} t) \\ (\sqrt{8}=2 \sqrt{2}) \\ L=\int_{0}^{\sqrt{2} \ln 2} 2 \sqrt{2} \cosh (\sqrt{2} t) d t \\ =2 \sinh (\sqrt{2} t)]_{0}^{\sqrt{2} \ln 2} \\ =2 \sinh (2 \ln 2) \\ =\frac{15}{4} \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.