Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - Chapter 12 Review Exercises - Page 903: 15

Answer

\begin{array}{l} \quad\left(\frac{1}{3} t^{3}+1\right) \mathrm{i}+\left(t^{2}+1\right) \mathrm{j} \end{array}

Work Step by Step

We find: \begin{array}{l} \int y^{\prime}(t) d t=\frac{1}{3} t^{3} \mathrm{i}+t^{2} \mathrm{j}+\mathrm{C} =\mathrm{y}(t)\\ \mathrm{y}(0)=\mathrm{i}+\mathrm{j} =\mathrm{C}\\ \left(\frac{1}{3} t^{3}+1\right) \mathrm{i}+\left(t^{2}+1\right) \mathrm{j} =\mathrm{y}(t)\\ \end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.