Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 857: 46

Answer

$${\bf{y}}\left( t \right) = \left( {\sin t + 1} \right){\bf{i}} - \left( {\cos t} \right){\bf{j}}$$

Work Step by Step

$$\eqalign{ & {\bf{y}}'\left( t \right) = \cos t{\bf{i}} + \sin t{\bf{j}},{\text{ }}{\bf{y}}\left( 0 \right) = {\bf{i}} - {\bf{j}} \cr & {\text{Calculate }}{\bf{y}}\left( t \right) \cr & {\bf{y}}\left( t \right) = \int {{\bf{y}}'\left( t \right)} dt \cr & {\bf{y}}\left( t \right) = \int {\left( {\cos t{\bf{i}} + \sin t{\bf{j}}} \right)} dt \cr & {\bf{y}}\left( t \right) = \sin t{\bf{i}} - \cos t{\bf{j}} + {\bf{C}} \cr & {\text{Use the initial condition }}{\bf{y}}\left( 0 \right) = {\bf{i}} - {\bf{j}} \cr & {\bf{y}}\left( 0 \right) = \sin \left( 0 \right){\bf{i}} - \cos \left( 0 \right){\bf{j}} + {\bf{C}} \cr & {\bf{i}} - {\bf{j}} = - {\bf{j}} + {\bf{C}} \cr & {\bf{C}} = {\bf{i}} \cr & {\text{Therefore,}} \cr & {\bf{y}}\left( t \right) = \sin t{\bf{i}} - \cos t{\bf{j}} + {\bf{i}} \cr & {\bf{y}}\left( t \right) = \sin t{\bf{i}} + {\bf{i}} - \cos t{\bf{j}} \cr & {\bf{y}}\left( t \right) = \left( {\sin t + 1} \right){\bf{i}} - \left( {\cos t} \right){\bf{j}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.