Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 857: 32

Answer

$$\frac{1}{3}{t^3}{\bf{i}} - {t^2}{\bf{j}} + \ln \left| t \right|{\bf{k}} + {\bf{C}}$$

Work Step by Step

$$\eqalign{ & \int {\left( {{t^2}{\bf{i}} - 2t{\bf{j}} + \frac{1}{t}{\bf{k}}} \right)dt} \cr & {\text{Integrating}} \cr & {\bf{i}}\int {{t^2}} dt - {\bf{j}}\int {2t} dt + {\bf{k}}\int {\frac{1}{t}} dt \cr & {\bf{i}}\left( {\frac{1}{3}{t^3} + {C_1}} \right) - {\bf{j}}\left( {{t^2} + {C_2}} \right) + \left( {\ln \left| t \right| + {C_3}} \right){\bf{k}} \cr & {\text{Simplifying, }}{\bf{C}} = {C_1}{\bf{i}} + {C_2}{\bf{j}} + {C_3}{\bf{j}}{\text{ is an arbitrary vector constant }} \cr & \frac{1}{3}{t^3}{\bf{i}} - {t^2}{\bf{j}} + \ln \left| t \right|{\bf{k}} + {\bf{C}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.