Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 857: 37

Answer

$$\frac{{5\sqrt 5 - 1}}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^2 {\left\| {t{\bf{i}} + {t^2}{\bf{j}}} \right\|} dt \cr & {\text{Calculate }}\left\| {t{\bf{i}} + {t^2}{\bf{j}}} \right\| \cr & \left\| {t{\bf{i}} + {t^2}{\bf{j}}} \right\| = \sqrt {{{\left( t \right)}^2} + {{\left( {{t^2}} \right)}^2}} \cr & \left\| {t{\bf{i}} + {t^2}{\bf{j}}} \right\| = \sqrt {{t^2} + {t^4}} \cr & {\text{Therefore,}} \cr & \int_0^2 {\left\| {t{\bf{i}} + {t^2}{\bf{j}}} \right\|} dt = \int_0^2 {\sqrt {{t^2} + {t^4}} } dt \cr & = \int_0^2 {\sqrt {{t^2}\left( {1 + {t^2}} \right)} } dt \cr & = \int_0^2 {t\sqrt {1 + {t^2}} } dt \cr & = \frac{1}{2}\int_0^2 {2t\sqrt {1 + {t^2}} } dt \cr & {\text{Integrate}} \cr & = \frac{1}{2}\left[ {\frac{{{{\left( {1 + {t^2}} \right)}^{3/2}}}}{{3/2}}} \right]_0^2 \cr & = \frac{1}{3}\left[ {{{\left( {1 + {t^2}} \right)}^{3/2}}} \right]_0^2 \cr & = \frac{1}{3}\left[ {{{\left( {1 + {{\left( 2 \right)}^2}} \right)}^{3/2}} - {{\left( {1 + {{\left( 0 \right)}^2}} \right)}^{3/2}}} \right] \cr & = \frac{1}{3}\left[ {{{\left( 5 \right)}^{3/2}} - {{\left( 1 \right)}^{3/2}}} \right] \cr & = \frac{{5\sqrt 5 - 1}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.