Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 857: 34

Answer

$$\left\langle { - {e^{ - t}},{e^t},{t^3}} \right\rangle + {\bf{C}}$$

Work Step by Step

$$\eqalign{ & \int {\left\langle {{e^{ - t}},{e^t},3{t^2}} \right\rangle } dt \cr & {\text{Integrating}} \cr & \int {\left\langle {{e^{ - t}},{e^t},3{t^2}} \right\rangle } dt = \left\langle {\int {{e^{ - t}}dt} ,\int {{e^t}dt,\int {3{t^2}dt} } } \right\rangle \cr & {\text{Integrating we obtain}} \cr & \left\langle { - {e^{ - t}},{e^t},{t^3}} \right\rangle + {\bf{C}} \cr & {\text{where }}{\bf{C}}{\text{ is a vector constant of integration}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.