Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.2 Calculus Of Vector-Valued Functions - Exercises Set 12.2 - Page 857: 35

Answer

$$\left\langle {0,1} \right\rangle $$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {\left\langle {\cos 2t,\sin 2t} \right\rangle } dt \cr & {\text{Integrate}} \cr & \int_0^{\pi /2} {\left\langle {\cos 2t,\sin 2t} \right\rangle } dt = \left[ {\left\langle {\frac{1}{2}\sin 2t, - \frac{1}{2}\cos 2t} \right\rangle } \right]_0^{\pi /2} \cr & {\text{Evaluate the limits of integration}} \cr & = \left\langle {\frac{1}{2}\sin 2\left( {\frac{\pi }{2}} \right) - \frac{1}{2}\sin 2\left( 0 \right), - \frac{1}{2}\cos 2\left( {\frac{\pi }{2}} \right) + \frac{1}{2}\cos 2\left( 0 \right)} \right\rangle \cr & {\text{Simplifying}} \cr & = \left\langle {\frac{1}{2}\sin \pi - \frac{1}{2}\sin 0, - \frac{1}{2}\cos \pi + \frac{1}{2}\cos 0} \right\rangle \cr & = \left\langle {0, - \frac{1}{2}\left( { - 1} \right) + \frac{1}{2}\left( 1 \right)} \right\rangle \cr & = \left\langle {0,1} \right\rangle \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.