Answer
$p(1) = -24$
$p(-1) = -12$
$p(3) = 12$
$p(-3) = 0$
$p(7) = 420$
$p(-7) = -168$
$p(21) = 10416$
$p(-21) = -7812$
Work Step by Step
We are given the polynomial $p(x) = x^3 + 3x^2 -7x - 21$ and asked to find $p(x)$ for $x=\pm 1, \pm 3, \pm 7,\pm21$ using synthetic division and the Remainder Theorem. We can directly evaluate the polynomial at each point.
Find $p(1)$:
We divide $p(x)$ by $x-1$:
\[
\begin{array}{r|rrrr}
& 1 & 3 & -7 &-21 \\ \hline
1 & & 1 & 4 & -3 \\ \hline
& 1 & 4 & -3 & -24 \\
\end{array}
\] The rest is $-24$, so $p(1)=-24$.
Find $p(-1)$:
We divide $p(x)$ by $x+1$:
\[
\begin{array}{r|rrrr}
& 1 & 3 & -7 &-21 \\ \hline
-1 & & -1 & -2 & 9 \\ \hline
& 1 & 2 & -9 & -12\\
\end{array}
\] The rest is $-12$, so $p(-1)=-12$.
Find $p(3)$:
We divide $p(x)$ by $x-3$:
\[
\begin{array}{r|rrrr}
& 1 & 3 & -7 &-21 \\ \hline
3 & & 3 & 18 & 33 \\ \hline
& 1 & 6 & 11 & 12\\
\end{array}
\] The rest is $12$, so $p(3)=12$.
Find $p(-3)$:
We divide $p(x)$ by $x+3$:
\[
\begin{array}{r|rrrr}
& 1 & 3 & -7 &-21 \\ \hline
-3 & & -3 & 0 & 21 \\ \hline
& 1 & 0 & -7 & 0\\
\end{array}
\] The rest is $0$, so $p(-3)=0$.
Find $p(7)$:
We divide $p(x)$ by $x-7$:
\[
\begin{array}{r|rrrr}
& 1 & 3 & -7 &-21 \\ \hline
7 & & 7 & 70 & 441 \\ \hline
& 1 & 10 & 63 & 420\\
\end{array}
\] The rest is $420$, so $p(7)=420$.
Find $p(-7)$:
We divide $p(x)$ by $x+7$:
\[
\begin{array}{r|rrrr}
& 1 & 3 & -7 &-21 \\ \hline
-7 & & -7 & 28 & -147 \\ \hline
& 1 & -4 & 21 & -168\\
\end{array}
\] The rest is $-168$, so $p(-7)=-168$.
Find $p(21)$:
We divide $p(x)$ by $x-21$:
\[
\begin{array}{r|rrrr}
& 1 & 3 & -7 &-21 \\ \hline
21 & & 21 & 504 & 10437 \\ \hline
& 1 & 24 & 497 & 10416\\
\end{array}
\] The rest is $10416$, so $p(21)=10416$.
Find $p(-21)$:
We divide $p(x)$ by $x+21$:
\[
\begin{array}{r|rrrr}
& 1 & 3 & -7 &-21 \\ \hline
-21 & & -21 & 378& -7791 \\ \hline
& 1 & -18 & 371 & -7812\\
\end{array}
\] The rest is $-7812$, so $p(-21)=-7812$.