Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix C - Solving Polynomial Equations - Exercise Set C - Page A33: 12

Answer

$$p\left( x \right) = \left( {x - 2} \right)\left( {x + 2} \right)\left( {3x + 1} \right)$$

Work Step by Step

$$\eqalign{ & p\left( x \right) = 3{x^3} + {x^2} - 12x - 4 \cr & {\text{The constant term is 4 }}\left( {{\text{which has divisors }} \pm 1, \pm 2, \pm 4} \right) \cr & {\text{Evaluating }}x = 1 \cr & p\left( 1 \right) = 3{\left( 1 \right)^3} + {\left( 1 \right)^2} - 12\left( 1 \right) - 4 = - 12 \cr & {\text{Evaluating }}x = - 1 \cr & p\left( { - 1} \right) = 6 \cr & {\text{Evaluating }}x = 2 \cr & p\left( 2 \right) = 3{\left( 2 \right)^3} + {\left( 2 \right)^2} - 12\left( 2 \right) - 4 = 0 \cr & \cr & p\left( x \right) = 0{\text{ for }}x = 2,{\text{ then }}\left( {x - 2} \right){\text{ is a factor of }}p\left( x \right) \cr & 3{x^3} + {x^2} - 12x - 4 = \left( {x - 2} \right)q\left( x \right) \cr & {\text{By the long division}}\,\,{\text{ }}x - 2\left){\vphantom{1{3{x^3} + {x^2} - 12x - 4}}}\right. \!\!\!\!\overline{\,\,\,\vphantom 1{{3{x^3} + {x^2} - 12x - 4}}}{\text{ we obtain}} \cr & 3{x^3} + {x^2} - 12x - 4 = \left( {x - 2} \right)\left( {3{x^2} + 7x + 2} \right) \cr & {\text{Factoring the trinomial of the form }}a{x^2} + bx + c \cr & 3{x^2} + 7x + 2 = \left( {x + 2} \right)\left( {3x + 1} \right) \cr & {\text{Thus}}{\text{,}} \cr & p\left( x \right) = 3{x^3} + {x^2} - 12x - 4 \cr & p\left( x \right) = \left( {x - 2} \right)\left( {3{x^2} + 7x + 2} \right) \cr & p\left( x \right) = \left( {x - 2} \right)\left( {x + 2} \right)\left( {3x + 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.