Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix C - Solving Polynomial Equations - Exercise Set C - Page A33: 11

Answer

$$p\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x + 1} \right)$$

Work Step by Step

$$\eqalign{ & p\left( x \right) = {x^3} - 2{x^2} - x + 2 \cr & {\text{The constant term is 2 }}\left( {{\text{which has divisors }} \pm 1, \pm 2} \right) \cr & {\text{Evaluating }}x = 1 \cr & p\left( 1 \right) = {\left( 1 \right)^3} - 2{\left( 1 \right)^2} - \left( 1 \right) + 2 \cr & p\left( 1 \right) = 0 \cr & \cr & p\left( x \right) = 0{\text{ for }}x = 1,{\text{ then }}\left( {x - 1} \right){\text{ is a factor of }}p\left( x \right) \cr & {x^3} - 2{x^2} - x + 2 = \left( {x - 1} \right)q\left( x \right) \cr & {\text{By the long division}}\,\,{\text{ }}x - 1\left){\vphantom{1{{x^3} - 2{x^2} - x + 2}}}\right. \!\!\!\!\overline{\,\,\,\vphantom 1{{{x^3} - 2{x^2} - x + 2}}}{\text{ we obtain}} \cr & {x^3} - 2{x^2} - x + 2 = \left( {x - 1} \right)\left( {{x^2} - x - 2} \right) \cr & {\text{Factoring the trinomial of the form }}{x^2} + bx + c \cr & {x^3} - 2{x^2} - x + 2 = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x + 1} \right) \cr & {\text{Thus}}{\text{,}} \cr & p\left( x \right) = {x^3} - 2{x^2} - x + 2 \cr & p\left( x \right) = \left( {x - 1} \right)\left( {{x^2} - x - 2} \right) \cr & p\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x + 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.