Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.3 - Separable Equations - 9.3 Exercises - Page 626: 8

Answer

$y = \tan \left( {{x^2} + C} \right)$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = 2x\left( {{y^2} + 1} \right) \cr & {\text{Separating the variables}} \cr & \frac{{dy}}{{{y^2} + 1}} = 2xdx \cr & {\text{Integrate both sides of the equation}} \cr & \int {\frac{{dy}}{{{y^2} + 1}}} = \int {2x} dx \cr & \arctan y = {x^2} + C \cr & {\text{solve for }}y \cr & \tan \left( {\arctan y} \right) = \tan \left( {{x^2} + C} \right) \cr & y = \tan \left( {{x^2} + C} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.