Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.3 - Separable Equations - 9.3 Exercises - Page 626: 20

Answer

$$y=-\sqrt{-2 x \cos x+2 \sin x+1} $$

Work Step by Step

Given $$\frac{d y}{d x}=\frac{x \sin x}{y}, \quad y(0)=-1$$ Separating the variables, we get \begin{align*} \int ydy &= \int x\sin xdx\\ \frac{1}{2} y^2&= \int x\sin xdx \end{align*} Use integration by parts \begin{align*} u&= x\ \ \ \ \ \ dv=\sin xdx\\ du&=dx\ \ \ \ \ v=-\cos x \end{align*} Then \begin{align*} \int x\sin xdx&= -x\cos x +\int \cos xdx\\ &= -x\cos x +\sin x+C \end{align*} Hence \begin{align*} \frac{1}{2} y^2&= -x\cos x +\sin x+C \end{align*} At $x=0$, $y=-1$, then $C=\dfrac{1}{2} $ and $$y=- \sqrt{-2 x \cos x+2 \sin x+1} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.