Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.3 - Separable Equations - 9.3 Exercises - Page 626: 16

Answer

$\sin y = \left( {1 - \frac{1}{x}} \right)k + \frac{1}{2}$

Work Step by Step

$$\eqalign{ & {x^2}y' = k\sec y,{\text{ }}y\left( 1 \right) = \frac{\pi }{6} \cr & {\text{Write }}y'{\text{ as }}\frac{{dy}}{{dx}} \cr & {x^2}\frac{{dy}}{{dx}} = k\sec y \cr & {\text{Separate the variables}} \cr & \frac{1}{{\sec y}}dy = \frac{k}{{{x^2}}}dx \cr & \cos ydy = k{x^{ - 2}}dx \cr & {\text{Integrate both sides of the equation}} \cr & \int {\cos y} dy = \int {k{x^{ - 2}}} dx \cr & \sin y = \frac{{k{x^{ - 1}}}}{{ - 1}} + C \cr & \sin y = - \frac{k}{x} + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}y\left( 1 \right) = \frac{\pi }{6} \cr & \sin \left( {\frac{\pi }{6}} \right) = - \frac{k}{1} + C \cr & \frac{1}{2} = - k + C \cr & C = k + \frac{1}{2} \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & \sin y = - \frac{k}{x} + k + \frac{1}{2} \cr & \sin y = \left( {1 - \frac{1}{x}} \right)k + \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.