Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.3 - Separable Equations - 9.3 Exercises - Page 626: 4

Answer

$y = C{e^{\ln \left| x \right|}} - 3$

Work Step by Step

$$\eqalign{ & xy' = y + 3 \cr & {\text{Write }}y'{\text{ as }}\frac{{dy}}{{dx}} \cr & x\frac{{dy}}{{dx}} = y + 3 \cr & {\text{Divide both sides by }}x \cr & \frac{{dy}}{{dx}} = \frac{{y + 3}}{x} \cr & {\text{Separate the variables}} \cr & \frac{{dy}}{{y + 3}} = \frac{{dx}}{x} \cr & {\text{Integrate both sides of the equation}} \cr & \int {\frac{{dy}}{{y + 3}}} = \int {\frac{{dx}}{x}} \cr & \ln \left| {y + 3} \right| = \ln \left| x \right| + k \cr & {\text{solve for }}y \cr & {e^{\ln \left| {y + 3} \right|}} = {e^{\ln \left| x \right| + k}} \cr & y + 3 = {e^{\ln \left| x \right|}}{e^k} \cr & {\text{Let 10}}k = C \cr & y + 3 = C{e^{\ln \left| x \right|}} \cr & y = C{e^{\ln \left| x \right|}} - 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.