Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.3 - Separable Equations - 9.3 Exercises - Page 626: 14

Answer

$\sqrt P = \frac{{{t^{3/2}}}}{3} + \sqrt 2 - \frac{1}{3}$

Work Step by Step

$$\eqalign{ & \frac{{dP}}{{dt}} = \sqrt {Pt} ,{\text{ }}P\left( 1 \right) = 2 \cr & {\text{Using the radical property }}\sqrt {ab} = \sqrt a \sqrt b \cr & \frac{{dP}}{{dt}} = \sqrt P \sqrt t \cr & {\text{Separating the variables}} \cr & \frac{{dP}}{{\sqrt P }} = \sqrt t dt \cr & {P^{ - 1/2}}dP = {t^{1/2}}dt \cr & {\text{Integrate both sides of the equation}} \cr & \int {{P^{ - 1/2}}dP} = \int {{t^{1/2}}dt} dx \cr & \frac{{{P^{1/2}}}}{{1/2}} = \frac{{{t^{3/2}}}}{{3/2}} + C \cr & 2\sqrt P = \frac{{2{t^{3/2}}}}{3} + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}P\left( 1 \right) = 2 \cr & 2\sqrt 2 = \frac{{2{{\left( 1 \right)}^{3/2}}}}{3} + C \cr & 2\sqrt 2 - \frac{2}{3} = C \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & 2\sqrt P = \frac{{2{t^{3/2}}}}{3} + 2\sqrt 2 - \frac{2}{3} \cr & \sqrt P = \frac{{{t^{3/2}}}}{3} + \sqrt 2 - \frac{1}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.