Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 550: 66

Answer

Diverges

Work Step by Step

$$\eqalign{ & \int_0^\infty {\frac{1}{{\sqrt x }}} dx \cr & {\text{Expressing the integral as a sum of improper integrals type 1}} \cr & {\text{and type 2 as follows:}} \cr & \int_0^\infty {\frac{1}{{\sqrt x }}} dx = \int_0^1 {\frac{1}{{\sqrt x }}} dx + \int_1^\infty {\frac{1}{{\sqrt x }}} dx,{\text{ }}0 > 1 \cr & \cr & {\text{*Calculating }}\int_0^1 {\frac{1}{{\sqrt x }}} dx \cr & {\text{Using the definition of improper integrals }} \cr & \int_0^1 {\frac{1}{{\sqrt x }}} dx = \mathop {\lim }\limits_{a \to {0^ + }} \int_a^1 {\frac{1}{{\sqrt x }}} dx \cr & = \mathop {\lim }\limits_{a \to {0^ + }} \left[ {2\sqrt x } \right]_a^1 \cr & = \mathop {\lim }\limits_{a \to {0^ + }} \left[ {2\sqrt 1 - 2\sqrt a } \right] \cr & = \mathop {\lim }\limits_{a \to {0^ + }} \left[ {2 - 2\sqrt a } \right] \cr & = \underbrace {\mathop {\lim }\limits_{a \to {0^ + }} \left[ 2 \right]}_{{\text{Tends to 2}}} - \underbrace {\mathop {\lim }\limits_{a \to {0^ + }} \left[ {2\sqrt a } \right]}_{{\text{Tends to 0}}} \cr & = 2 + 0 \cr & = 2 \cr & \cr & {\text{*Calculating }}\int_1^\infty {\frac{1}{{\sqrt x }}} dx \cr & {\text{Using the definition of improper integrals }} \cr & \int_1^\infty {\frac{1}{{\sqrt x }}} dx = \mathop {\lim }\limits_{b \to \infty } \int_1^b {\frac{1}{{\sqrt x }}} dx \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {2\sqrt x } \right]_1^b \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {2\sqrt b - 2\sqrt 1 } \right] \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {2\sqrt b - 2} \right] \cr & = \underbrace {\mathop {\lim }\limits_{a \to {0^ + }} \left[ {2\sqrt b } \right]}_{{\text{Tends to }}\infty } - \underbrace {\mathop {\lim }\limits_{a \to {0^ + }} \left[ 2 \right]}_{{\text{Tends to 2}}} \cr & {\text{Diverges}} \cr & \cr & {\text{Therefore}}{\text{,}} \cr & \int_0^\infty {\frac{1}{{\sqrt x }}} dx = \underbrace {\int_0^1 {\frac{1}{{\sqrt x }}} dx}_{{\text{tends to 2}}} + \underbrace {\int_1^\infty {\frac{1}{{\sqrt x }}} dx}_{{\text{diverges}}},{\text{ }}0 > 1 \cr & \int_0^\infty {\frac{1}{{\sqrt x }}} dx:{\text{ Diverges}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.