Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 550: 17

Answer

$\frac{1}{2}$

Work Step by Step

$$\eqalign{ & \int_0^\infty {\frac{{{e^x}}}{{{{\left( {1 + {e^x}} \right)}^2}}}} dx \cr & {\text{Using the definition of improper integrals }} \cr & \underbrace {\int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{t \to \infty } } \int_a^t {f\left( x \right)} dx}_ \Downarrow \cr & \int_0^\infty {\frac{{{e^x}}}{{{{\left( {1 + {e^x}} \right)}^2}}}} dx = \mathop {\lim }\limits_{t \to \infty } \int_0^t {\frac{{{e^x}}}{{{{\left( {1 + {e^x}} \right)}^2}}}} dx \cr & {\text{Rewrite the integrand}} \cr & = \mathop {\lim }\limits_{t \to \infty } \int_0^t {{{\left( {1 + {e^x}} \right)}^{ - 2}}{e^x}} dx \cr & {\text{Integrating}} \cr & = \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{{{{\left( {1 + {e^x}} \right)}^{ - 1}}}}{{ - 1}}} \right]_0^t \cr & = - \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{1}{{1 + {e^x}}}} \right]_0^t \cr & = - \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{1}{{1 + {e^t}}} - \frac{1}{{1 + {e^0}}}} \right] \cr & = - \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{1}{{1 + {e^t}}} - \frac{1}{2}} \right] \cr & {\text{Evaluate the limit when }}t \to \infty \cr & = - \frac{1}{{1 + {e^{\mathop {\lim }\limits_{t \to \infty } t}}}} + \frac{1}{2} \cr & = 0 + \frac{1}{2} \cr & = \frac{1}{2} \cr & {\text{Therefore}}{\text{, the integral converges.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.