Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 550: 24

Answer

Diverges

Work Step by Step

$$\eqalign{ & \int_0^\infty {\sin \theta {e^{\cos \theta }}} d\theta \cr & {\text{Using the definition of improper integrals }} \cr & \underbrace {\int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{t \to \infty } } \int_a^t {f\left( x \right)} dx}_ \Downarrow \cr & \int_0^\infty {\sin \theta {e^{\cos \theta }}} d\theta = \mathop {\lim }\limits_{t \to \infty } \int_0^t {\sin \theta {e^{\cos \theta }}} d\theta \cr & = - \mathop {\lim }\limits_{t \to \infty } \int_0^t {{e^{\cos \theta }}} \left( { - \sin \theta } \right)d\theta \cr & {\text{Integrating}} \cr & = - \mathop {\lim }\limits_{t \to \infty } \left[ {{e^{\cos \theta }}} \right]_0^t \cr & = - \mathop {\lim }\limits_{t \to \infty } \left[ {{e^{\cos t}} - {e^{\cos 0}}} \right] \cr & = {e^{\left( {\mathop {\lim }\limits_{t \to \infty } \cos t} \right)}} - e \cr & {\text{Evaluate the limit when }}t \to \infty \cr & \mathop {\lim }\limits_{t \to \infty } \cos t{\text{ oscillates between }} \pm {\text{1}}{\text{, the limit does not exist}}{\text{.}} \cr & {\text{Therefore}}{\text{, the integral diverges.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.