Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 550: 13

Answer

$ - \frac{1}{4}$

Work Step by Step

$$\eqalign{ & \int_{ - \infty }^0 {\frac{x}{{{{\left( {{x^2} + 1} \right)}^3}}}} dx \cr & {\text{Using the definition of improper integrals }} \cr & \underbrace {\int_{ - \infty }^b {f\left( x \right)dx = \mathop {\lim }\limits_{t \to - \infty } } \int_t^b {f\left( x \right)} dx}_ \Downarrow \cr & \int_{ - \infty }^0 {\frac{x}{{{{\left( {{x^2} + 1} \right)}^3}}}} dx = \mathop {\lim }\limits_{t \to - \infty } \int_t^0 {\frac{x}{{{{\left( {{x^2} + 1} \right)}^3}}}} dx \cr & {\text{Rewrite the integrand}} \cr & = \frac{1}{2}\mathop {\lim }\limits_{t \to - \infty } \int_t^0 {{{\left( {{x^2} + 1} \right)}^{ - 3}}\left( {2x} \right)} dx \cr & {\text{Integrate by using the power rule}} \cr & = \frac{1}{2}\mathop {\lim }\limits_{t \to - \infty } \left[ {\frac{{{{\left( {{x^2} + 1} \right)}^{ - 2}}}}{{ - 2}}} \right]_t^0 \cr & = - \frac{1}{4}\mathop {\lim }\limits_{t \to - \infty } \left[ {\frac{1}{{{{\left( {{x^2} + 1} \right)}^2}}}} \right]_t^0 \cr & = - \frac{1}{4}\mathop {\lim }\limits_{t \to - \infty } \left[ {\frac{1}{{{{\left( {{0^2} + 1} \right)}^2}}} - \frac{1}{{{{\left( {{t^2} + 1} \right)}^2}}}} \right] \cr & {\text{Evaluate the limit when }}t \to - \infty \cr & = - \frac{1}{4}\mathop {\lim }\limits_{t \to - \infty } \left[ {\frac{1}{1} - 0} \right] \cr & = - \frac{1}{4} \cr & {\text{Therefore}}{\text{, the integral converges.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.